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Main memory system is a shared resource in modern multicore machines that can result in serious 
interference leading to reduced throughput and unfairness. Many new memory scheduling mechanisms 
have been proposed to address the interference problem. However, these mechanisms usually employ 
relative complex scheduling logic and need modifications to memory controllers (MCs), which incur 
expensive hardware design and manufacturing overheads.   
     This paper presents a practical software approach to effectively eliminate the interference without any 
hardware modifications. The key idea is to modify the OS memory management system and adopt a page-
coloring based bank-level partitioning mechanism (BPM) that allocates dedicated DRAM banks to each 
core (or thread). By using BPM, memory requests from distinct programs are segregated across multiple 
memory banks to promote locality/fairness and reduce interference. We further extend BPM to BPM+ by 
incorporating channel-level partitioning, on which we demonstrate additional gain over BPM in many 
cases. To achieve benefits in the presence of diverse application memory needs and avoid performance 
degradation due to resource underutilization, we propose a dynamic mechanism upon BPM/BPM+ that 
assigns appropriate bank/channel resources based on application memory/bandwidth demands monitored 
through PMU (performance monitoring unit) and a low-overhead OS page table scanning process.  
     We implement BPM/BPM+ in Linux 2.6.32.15 kernel and evaluate the technique on 4-core and 8-core 
real machines by running a large amount of randomly generated multi-programmed and multi-threaded 
workloads. Experimental results show that BPM/BPM+ can improve the overall system throughput by 
4.7%/5.9% on average (up to 8.6%/9.5%) and reduce the unfairness by an average of 4.2%/6.1% (up to 
15.8%/13.9%).  
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 INTRODUCTION 1.
Modern multicore machines provide parallel and powerful hardware components to 
deliver generic computing capabilities for simultaneously running applications.   
These applications often exhibit diverse and dynamic characteristics in memory 
accesses, which are serviced by the commonly shared DRAM memory system. This 
posts significant issues such as memory interferences and resource 
underutilization/unfairness as a result of blindly sharing memory resource among 
applications with distinct memory and bandwidth requirements. For example, a 
memory-intensive application whose memory requests dominate a memory 
bank/channel can significantly interfere with and cause performance lost for a non-
memory-intensive application utilizing that memory bank/channel [Y.Kim and 
O.Mutlu, 2010; O.Mutlu and T.Moscibroda, 2007 and 2008; S. P. Muralidhara et al 
2011]. 

A number of recently proposed scheduling algorithms [Y.Kim and O.Mutlu, 2010; 
O.Mutlu and T.Moscibroda, 2007 and 2008; S. P. Muralidhara et al, 2011] that are 
aware of different application memory characteristics have been demonstrated to be 
effective for reducing the memory contention and interference. For instance, TCM 
[Y.Kim and O.Mutlu, 2010], which classifies threads into memory-intensive group 
and non-intensive group and uses different policies for the two groups, is shown to 
exhibit both performance and QoS (Quality of Service) improvements for the overall 
system. Although some sophisticated memory scheduling algorithms are claimed to 
be easy for integration into memory controllers (MCs) [Y.Kim and O.Mutlu, 2010; 
G.L.Yuan et al, 2009; O.Mutlu and T.Moscibroda, 2008; C.Natarajan et al, 2004; S. P. 
Muralidhara et al 2011], they usually introduce relatively complex hardware logic 
and require extra storage in MCs to store per-core (or per-thread) information.  
    In this paper, we propose software approaches to effectively eliminate the memory 
contention and interference problem without any hardware modifications to MCs. 
Our approach is inspired by three observations that 1) DRAM bank-level conflict is a 
major source for the memory contention and interference problem and 2) the 
performance benefit achieved through multi-banking for one thread does not scale 
beyond a certain number of banks (typically less than 16). 3) Contention and 
interference among memory channels across threads often cause memory operation 
thrashing and bandwidth underutilization, even with the prevalent channel-level 
interleaved access patterns (discussed in Section 3).  
    Theoretically, exclusively mapping a thread’s data to a number of dedicated banks 
can eliminate inter-thread bank-level conflicts. We adopt this basic idea and modify 
the physical page allocation policy in the OS memory management subsystem so that 
physical pages in specific banks are exclusively mapped to a specific thread (or core). 
For example, if the OS maps thread 1’s data to 4 banks (e.g., bank 0~3) and maps 
thread 2’s data to 12 banks (e.g., bank 4~15), the MC will deliver all memory 
requests from thread 2 to only bank 4~15 without affecting thread 1, whose memory 
requests are delivered to only bank 0~3. By enforcing this mapping, the bank-level 
inter-thread memory contention and interference are eliminated. We call this 
approach Bank-level Partitioning Mechanism (BPM), which is an extension of the 
page-coloring. Other than the bank-level interferences, multiple memory requests 
issued from different threads directed to the same DRAM channel can also cause in-
channel interferences, which not only exacerbate the overall system interference but 
also defeat any prior method that aims to address only a single aspect (i.e., bank- or 
channel-level) of the problem.  To address the channel-level memory contention and 
promote more efficient memory operations and utilization, we propose channel-level 
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partitioning as an extension of BPM, noted as BPM+.  BPM+ can be used together 
with BPM to effectively mitigate multi-thread memory interference issue at different 
levels and improve performance as well as quality of service (QoS) for a wide range of 
applications, particularly those with intensive memory accesses such as server and 
graphic workloads.  In scenarios where the concurrently running applications require 
drastically different memory resources, our partitioning policy can detect each 
application’s memory capacity needs by monitoring the amount of application’s 
potentially required pages in the OS page table and bandwidth requirement through 
the processor’s performance monitoring unit (PMU). Based on the obtained 
information, our scheme dynamically assigns/adjusts appropriate amount of memory 
resources (i.e., memory banks and channels) for each application to avoid resource 
underutilization and unfairness.  
     One remarkable advantage of our approach is that we cooperatively and 
dynamically utilize DRAM bank- and channel-level information to mitigate inter-core 
memory interference, reduce contention and enhance memory access fairness for 
multicore platforms. We implement BPM and BPM+ in Linux 2.6.32.15 kernel and 
run multi-programmed/threaded workloads on 4-core and 8-core real machines to 
evaluate BPM/BPM+. Experimental results show that BPM can improve the overall 
system throughput by 4.7% (up to 8.6%), and reduce the maximum slowdown by 4.5% 
(up to 15.8%) on average. Moreover, BPM+ can bring additional up to 3% throughput 
improvement, and it outperforms BPM in many cases. We also find that BPM and 
BPM+ can save 5.2% energy consumption compared to the existing memory system. 
     In summary, we make the following contributions: 
(1) We observe that the required number of banks for a particular thread does not 
scale beyond a certain value, which means that the thread’s performance would not 
be improved if more banks were assigned to it. Empirical studies with diverse 
programs show that 8 ~ 16 banks are enough for one thread.  
(2) We propose a new practical page-coloring based Bank-level Partitioning 
Mechanism (BPM) to effectively eliminate the memory contention and interference 
problem without any hardware modifications to MCs.  
(3) We study the memory request handling mechanisms used in existing MCs with 
multi-channel support and find that the commonly used address interleaving based 
approach can post inter-core interference issues. To mitigate the channel-level 
interference we enhance BPM to BPM+ by introducing a partitioning approach at 
DRAM channel-level and demonstrate that BPM+ works well with BPM. 
(4) To avoid memory bank/channel underutilizations and satisfy programs with 
dynamically changing memory capacity and bandwidth requirements, we develop a 
dynamic partitioning module for BPM/BPM+. The dynamic partitioning module 
monitors each application’s memory requirement as well as the bandwidth utilization 
and allocates/adjusts the memory bank/channel resources accordingly to balance 
channel utilization, promote fairness and avoid memory limitations for high memory 
demanding applications. To the best of our knowledge, this work is the first to 
propose and implement the bank/channel partitioning based on dynamic application 
memory demands. 
(5) We implement BPM and BPM+ in Linux 2.6.32.15 kernel for evaluation. 
Experimental results show that BPM and BPM+ can stably improve the overall 
system throughput, reduce the unfairness (represented by maximum slowdown) for 
most workloads and save energy consumption of the memory system. Moreover, BPM 
and BPM+ scale well for future multicore systems. 
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(6) We study the correlation between several micro-architecture factors (i.e., per-core 
bandwidth, row-buffer locality and DRAM page-policy) and the effectiveness of our 
BPM/BPM+, and find that our mechanism is promising for prevalent multi-/many-
core platforms. Moreover, we devise an accurate indicator for BPM/BPM+’s 
effectiveness represented as a function of the standard deviation of each thread’s 
row-buffer locality (i.e., Sum(BW)*Stdev(RBL)), which can be used to predict the 
performance improvement brought by BPM/BPM+. 

 BACKGROUND AND MOTIVATION 2.
2.1 DRAM System 
We briefly describe DRAM memory systems and OS memory management 
mechanism. Our description is based on DDR3 SDRAM systems and it is generally 
applicable to other DRAM systems that employ banking and paging mechanisms. 
DRAM Organization: Modern memory system consists of multiple independent 
banks, each of which contains at least one two-dimensional storage array. Banks can 
operate in parallel and thus memory requests to different banks can be served 
concurrently [O.Mutlu and T.Moscibroda, 2007 and 2008; S.Rixner et al, 2000]. 

However, since each bank has only one row-buffer, only one row is accessible in a 
bank at any time. Typically, DDR3 chip’s row buffer has a size of 1KB~2KB. Once a 
request to a bank arrives, if the required row is in the row-buffer, MC can 
immediately issue a read/write command. Otherwise, a row-buffer conflict occurs 
and the MC needs to issue a precharge command to write back the content in the 
row-buffer and then issue an activate command to fetch the required row into the row 
buffer before issuing the read/write command. Obviously, a row-buffer conflict 
results in memory latency longer than that in the case of a row-buffer hit without 
any conflicts. For parallel applications, especially multi-programed workloads, 
requests from different cores rarely go to the same row and thus the row-buffer 
conflict occurs more frequently on a multicore platform, compared to a single thread 
computing environment. 
Bank-Level Parallelism (BLP) and Bank Sharing:  BLP indicates that multiple 
banks can serve concurrent memory requests because they are largely independent2. 
BLP can often help make full utilization of banks and improve memory bandwidth. 
Hence, memory system usually employs a bank-interleaved address mapping scheme 
to take advantage of BLP [C.J.Lee et al, 2009; O.Mutlu and T.Moscibroda, 2007 and 
2008; S.Rixner et al, 2000, Z.Zhang et al, 2000], which unselectively shares all banks 
among all cores in a multicore system. Unfortunately, such a global bank-sharing 
scheme brings interferences among threads because one bank may receive memory 
requests from different cores with significantly distinct memory access 
characteristics. Therefore, the inter-core bank conflicts become more and more 
frequent as the core number increases.  
Multi-channel DRAMs: Multi-channel technologies are employed in modern DRAM 
systems and supported by many popular microarchitectures including Intel i7 
(double/triple-channel) and AMD Opteron 6100 processors (quad-channel). In such 
systems each channel is equipped with its own row/column control bus and data bus 
and thus can operate independently to provide higher memory bandwidth and data 
transfer rate compared to a single channel memory system. To promote high 
bandwidth utilization and ensure memory accesses are evenly distributed, modern 

 
2 Multiple banks under the same channel typically have independent decoders, row buffers, etc., but they 
can still share command and data buses.  
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MCs finely interleave memory requests from multiple processing cores across all 
channels.   
OS Memory Management: Currently, the Linux kernel’s memory management 
system uses a buddy system to manage physical memory pages. In the buddy system, 
a power-of-two number of continuous pages (called a block) are organized in a free 
list in sequential order, ranging from zero to a specific upper limit. When a program 
accesses an unmapped virtual address, a page fault occurs and the OS kernel takes 
over the subsequent execution flow where the buddy system identifies the free list in 
an appropriate order and allocates one block of pages for that program. Usually the 
first block of a free list is selected but the exact physical pages are undetermined 
[S.Cho and L.Jin et al, 2006; J.Lin et al, 2009]. 

2.2 Multicore-posed Challenges and Current Solutions 
Multicore architecture poses two major challenges on memory systems:  
Interference: Usually a single thread’s memory requests have good locality and 
exhibit a high row-buffer hit rate. However, this high locality can be significantly 
reduced in a multicore machine where multiple threads issue requests with shuffled 
memory addresses that break the locality a single thread would see. As a result, row- 
buffer hit rate decreases sharply, leading to poor overall system performance. For 
example, Udipi [A. Udipi et al, 2010] demonstrate that the row-buffer hit rate 
decreases significantly from 1 core (over 60%) to 16 cores (35%).  
Unfairness: Conventional MC scheduling algorithms (e.g., FR-FCFS [I. Hur et al 
2007, S. Rixner et al, 2000]) are designed in favor of memory requests with good row-
buffer locality in order to improve row buffer hit rate. Therefore, memory intensive 
applications with better locality can obtain higher priority over memory non-
intensive applications. For instance, Mutlu et al. [O.Mutlu and T.Moscibroda, 2007] 
demonstrate that the slowdown for some memory non-intensive applications can 
increase by 7.74X for a 4-core system and 11.35X for an 8-core system whereas the 
memory intensive applications only experience a slowdown of 1.04X and 1.09X, 
respectively.  

One major reason of the two problems is that in practice MCs cannot identify 
distinct memory access patterns from various threads in a multiple-threaded memory 
request stream and these memory requests are scheduled by the basic FR-FCFS 
policy, which aims to maximize the utilization of the opened row-buffer in DRAM 
banks but leaves potential optimization opportunities for system fairness and overall 
performance [I. Hur et al, 2007; R. Iyer et al, 2007; C.J.Lee, 2009; Y.Kim et al, 2010; 
O.Mutlu et al, 2007 and 2008]. To address these challenges, many new memory 
scheduling algorithms have been proposed. For instance, the state-of-the-art 
scheduling algorithm Thread Clustering Memory Scheduling (TCM) [Y.Kim et al, 
2010] brings both performance and QoS improvements for the overall system by 
identifying the threads’ memory patterns and then classifying threads into memory-
intensive group and non-intensive group, each of which adopts a different scheduling 
policy.  

Another important reason is DRAM bank-level conflict. As mentioned above, 
because all banks are shared by all cores, one bank can receive memory requests 
from different cores with different memory access characteristics. Unfortunately, 
even the state-of-the-art scheduling algorithms are unable to fully eliminate the 
interference problem unless banks are not shared among cores. Some partitioning 
approaches are proposed in order to eliminate interference at cache level [J.Lin et al,  
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Figure 1. The correlation between application performance and 
number of banks. The blue line is the “watershed”, which 
indicates all benchmarks can achieve 90% of its maximum 
performance with only 16 banks. 

 
 
 
 

 
 
2008] while leaving the contention at bank-level unaddressed. Recent research 
proposes a bank-level partitioning among multi-programmed workloads [W.Mi 
X.Feng et al, 2010; M.K.Jeong et al, 2012]. However, their work is not deployed or 
tested with real hardware.  

In addition to the bank-level conflict, the prevalence of multi-channel memory 
technology (e.g., DDR, DDR2, SDRAM and DDR3) introduces another level of conflict 
that further exacerbates the memory interference problem.  This is due to the fact 
that existing MCs in multi-channel memories make a straightforward attempt to 
promote high channel utilization among multiple cores/threads by finely interleaving 
(e.g., at 64 bytes granularity) memory requests across multiple memory channels. 
With such a fine-grained interleaving, MCs virtually deliver memory requests from 
all running threads to every channel, creating significant contention issue and 
performance bottleneck, especially when threads’ memory requests with disparate 
characteristics are blended together within one channel. For example, in a typical 
system where the MCs prioritize memory requests with higher row-buffer locality, 
memory requests from a thread with streaming access pattern (or other memory-
intensive patterns with higher row-buffer locality) are interleaved across all channels 
and thus all other threads (especially memory-non-intensive ones) suffer from 
significant interference and unfairness issue. Even MCs in the most recent 
commodity processor chips (e.g. i7 series) are completely unaware of the channel-
level contention and blindly interleave all memory requests among all channels. S. P. 
Muralidhara et al. [S. P. Muralidhara et al, 2011] propose a channel partitioning 
approach to address this problem. However, they do not take into account the bank-
level conflict problem together and they do not verify their approach on real 
machines. 

Although many of the aforementioned solutions [Y.Kim and O.Mutlu, 2010; 
G.L.Yuan et al, 2009; O.Mutlu and T.Moscibroda, 2008; C.Natarajan et al, 2004; S. P. 
Muralidhara et al, 2011] are claimed to be easy and low overhead, they usually 
introduce considerable amount of storage to collect various information (e.g,  per-core  
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Figure 2. Address mapping policy of our platform (i7-860 8GB 
DDR3). The bank bits are divided into two separate parts. One is 
overlapped with cache set bits and the other is independent. 

 
 
 
 
 
 
 
 
 
 
access patterns, row-buffer hit rates, bandwidth requirements, etc.) and expensive 
hardware to perform adaptive memory request scheduling algorithms. For example, 
TCM [Y.Kim and O.Mutlu, 2010] requires additional 4K bits storage in a MC to 
support 24 cores, an extra hardware unit to rank threads and a central meta-
controller to gather global information from multiple MCs. Additionally, their 
method requires a sophisticated hardware for monitoring thread behaviors such as 
context-switch, which could occur frequently when the thread number in the system 
is much larger than the core number. Therefore, industrial vendors seem to show 
some hesitation in adopting these aggressive and hardware-based scheduling 
algorithms. Hence a question is raised: Can we use a software approach to 
achieve the similar effect as these hardware solutions do? 

2.3 Our Insights 
Intuitively, the inter-thread bank-level conflicts can be fully eliminated through 
exclusively mapping a thread’s data to a limited number of banks. However, doing so 
will reduce the available banks and potentially the bank-level parallelism. Thus, it is 
important to know how the amount of available banks influences the performance. 

We conduct experiments on an Intel i7-860 machine with 64 banks (125MB per 
bank) to analyze the correlation between the amount of banks and application’s 
performance (details of experimental setup are in Section 4). For each application, we 
vary the number of available banks from 8 to 64 and observe the performance 
changes. Figure 1 illustrates the results of 23 benchmarks from SPEC2006 [Standard 
Performance Evaluation Corporation]. Surprisingly, we find that the necessary 
amount of banks one program requires is limited, for example 16 banks in our 
experiments. In other words, providing more banks (e.g., all 64 banks) than the 
necessary amount (e.g., 16 banks) to a program will not yield significant performance 
improvement. 

Typically, a single core is not likely to generate enough concurrent memory 
requests due to a combination of many factors such as memory dependency, high 
cache hit rate and limited number of MSHRs. Nevertheless, most modern systems 
always interleave memory requests across all banks in order to take advantage of the 
bank-level parallelism. In those systems, any program can access all the DRAM 
banks, largely exceeding the necessary amount a single application requires. As a 
result, the programs that share all banks suffer from memory interference rather 
than obtaining any performance gain. In DRAMs with multi-channel support, the 
memory interference issue is further amplified due to the fine-grained (e.g., cache-
block-level) interleaving of memory requests among all channels, which is adopted in 
many existing MCs to promote high channel bandwidth utilization among multiple 
cores/threads (see Section 3.2 for details).  In such a scenario, memory requests  from  
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any program can be potentially interleaved among all channels, thus multiple 
concurrently running programs with diverse access patterns can reside within the 
same channel. Consequently, applications might suffer from more severe interference 
and contention when all cores share all the channels and banks. 
    The above insight inspires us that it is feasible to partition banks into several 
groups and then designates specific bank groups to specific threads so as to eliminate 
inter-thread bank conflicts. Based on the key insight, we propose a software approach, 
OS page-coloring based bank-level partitioning mechanism (BPM), to effectively 
eliminate the memory contention and interference problem without any hardware 
modification to MCs. Moreover, with the concern about channel-level interference 
and contention, we further extend BPM to BPM+, which partitions channels among 
threads and reduce the channel-level contention and interference.   

 BANK- AND CHANNEL-LEVEL PARTITIONING MECHANISM 3.
 Bank-level Partitioning Mechanism (BPM)  3.1

The key idea of BPM is that OS memory management system can use a page-coloring 
mechanism to partition banks into several groups and maps each thread’s (process) 
memory requests to a specific bank group. Consequently, MCs can passively schedule 
them in a thread-cluster (or core-cluster) way, i.e., scheduling one thread’s memory 
requests to a group of pre-assigned banks. 
3.1.1 Partitioning Methodology 
A physical address contains several bits that are commonly used to denote both OS 
page index and bank index. These bits are referred to as bank color bits. For instance, 
if a physical address has 4 bank color bits, then there are 24=16 bank colors. 
Partitioning means that BPM exclusively assigns banks with the same color to a 
thread such that only that specific thread can access those banks. Note that a thread 
can have multiple bank colors. Consider the following as a concrete example. Our 
experimental machine has 8GB DDR3 main memory with 64 banks. Typically the OS 
page size is 4KB and thus the OS physical page index bits are bit 12~32. Figure 2 
illustrates the 5 bank color bits of our platform, i.e., bit 13~15 and bit 21~22. We use 
these 5 bits to represent 25 = 32 colors for the 8G/64-bank system and thus each color 
corresponds to 2 banks across different channels (bit 6 denotes the channel). The 5 
coloring bits in the index (bit 12~32) of a particular OS page designate the color and 
thus the corresponding memory bank(s) to which the page is assigned. When a 
thread applies for one page, BPM first checks which bank colors are owned by the 
thread, and then one of the available bank colors is selected and a corresponding 
physical page with that color is allocated for the thread.  
 

 
Figure 3. The comparison between interleaved address 
mapping and BPM. Different colors represent requests from 
different threads. 
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3.1.2 Advantages of BPM 
Although the OS page-coloring technique is well known for its adoption in cache 
partitioning techniques [J.Lin et al, 2008], the proposed BPM, to the best of our 
knowledge, is the first attempt to effectively leverage the page-coloring to eliminate 
DRAM bank interferences in practice. In particular, BPM allows the OS to partition 
memory space based on the underlying memory bank information. Because some 
MCs also schedule memory requests at bank level, the OS partitioning effect can be 
indirectly propagated to MCs.  
    Figure 3 illustrates the advantage of BPM. The smaller blocks represent row- 
buffer hits with lower latencies. Assume there are three threads (denoted by different 
colors) issuing memory requests to DRAM banks.  In conventional page allocation 
without BPM (the left), these requests are delivered to all banks, resulting in many 
row-buffer conflicts. With BPM (on the right), one thread’s memory requests are 
mapped to its dedicated banks so that row-buffer conflicts are eliminated among 
threads (cores).  
    Specifically, BPM brings the following advantages: 
(1) BPM is an entirely software approach and thus it is easier to be implemented in 
modern multi-core systems. Additionally, BPM, as a software approach, is more 
flexible and offers a wider spectrum of customization compared to hardware 
approaches.  In particular, more partitioning policies can be explored to achieve 
better performance.  
(2) Compared to prior hardware approaches that require additional storage and logic, 
our OS-based scheme can monitor threads’ behavior (e.g., cache miss rate, memory 
bandwidth, etc.) by leveraging the existing performance counter available in 
contemporary processors with negligible overhead. This significantly eases the 
exploration of the partitioning policies. 
(3) Moreover, BPM brings opportunities for improving other OS functionalities. For 
example, the OS process management module can utilize BPM partitioning 
information to guide process scheduling. BPM can also be implemented in Virtual 
Machine Monitor (VMM) to partition memory space for virtual machines in order to 
enhance the VM isolation. 

3.2 Channel-level Partitioning and BPM+ 
The baseline BPM partitions memory requests at the DRAM bank level and is 
completely unaware of different DRAM channels. Based on our quantitative study 
(see the following sections for more details), inter-threads memory interference can 
also frequently occur at channel level due to the way MCs interleave memory 
requests. Specifically, existing MCs typically use a particular low-order bit (the bit 6 
in Figure 2) in the physical address to finely interleave the memory requests among 
DRAM channels. This fine-grained interleaving mechanism reduces potential 
memory access hot spots in a particular channel but significantly increases the 
channel-wide interferences among threads.   
Figure 4(a) illustrates a common scenario where memory requests from six threads 
are finely shuffled in the two channels, each of which contains requests from all the 
threads and thus suffers from all-to-all thread interferences. In other words, any 
thread might potentially compete with, or break the locality of, any other threads in 
the system. The fact that a memory request from a single thread in one channel can 
be distributed to multiple banks under this channel further  increases  the  likelihood 
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    (a) No partition is used (cache-line interleaving)                 (b) BMP+ is used (BPM+ includes BPM) 
                                               Figure 4. Interference elimination via BMP+. 
 
of the inter-core interferences. For example, the black request in channel 1 is sent to 
bank group 1 and 2 while the green requests are directed to all of the three banks 
groups, creating potential contention with the requests from all the other processes 
in the channel. The issue becomes particularly severe when each channel contains 
requests from a large number of different cores, which is likely to be the case with 
the core number scaling and the fine-grained address interleaving.  By contrast, 
Figure 4(b) depicts that in our approach a coarse-grained channel-level partitioning 
is applied to exclusively split the requests into two groups based on the issuing cores. 
This reduces the possibility of the all-to-all interference among threads/cores. The 
channel-level partitioning can be achieved by modifying the channel selection bits in 
the system BIOS (shift the channel selection bit from the 6th one to the 32nd one) 
and the OS memory management policy (see Section 3.4).   
    As Figure 4(b) shows, after the channel partitioning, threads in the two different 
channels are isolated thus only half of the system’s threads could potentially 
interfere with each other. Combined with our BPM approach, requests from different 
threads in a particular channel can be further directed to the pre-designated bank 
groups and thus the interference is entirely eliminated while the parallelism is still 
preserved within the bank group. We call this combination of bank- and channel-level 
partitioning approach BPM+. 

3.3 Discover Bank Bits by Software Method  
In order to employ BPM and BPM+, we need to obtain the memory address mapping 
information so as to extract the bank bits. The address mapping in a specific memory 
design can be found in the corresponding vendor’s manual. However, address 
mapping in a MC is not fixed and can be configured by BIOS at boot time. Moreover, 
a MC can support various address mapping policies. Some hardware tools can be 
used to derive the address mapping policy, but it is impossible to deploy this 
approach for a large number of machines in production environments. In order to 
solve this problem, we propose a practical software method (Algorithm1) to discover 
the address mapping policy as well as bank selection bits for any particular machine. 
The approach is based on two observations that: 1) the latency of row buffer misses is 
much longer than the latency of row buffer hits (refer to STEP 1); 2) concurrent 
accesses to two different banks (BLP) still result in lower latency than row buffer 
conflict within a bank (refer to STEP 2). We verify our algorithm and the verification 
results show that our algorithm works well on various platforms. Thus, this 
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algorithm can be embedded into the OS bootstrap to collect the address mapping 
information, which can be used for BPM and BPM+ setup. We show a concrete 
example on an Intel i3 platform in Appendix.  
 
Algorithm1: Discover Bank Bits 
Input: The address bits; Output: BANK{}, which contains all bank bits. 
BEGIN 
/* STEP 1: Detect row address bits. */ 
/*Based on the idea that row miss causes larger latency.*/ 
1. FOR each bit x IN address bits 
2. DO 
3.      Generate 2 memory requests, one’s x bit is 0, and another’s x bit is 1 
4.      Access the two addresses (uncached) in turn and record the latency (repeat at least 1000000 times) 
5. END FOR 
6. The latency will be easily clustered into two groups 
7. Put the group with higher latency into Row{}  //higher latency is caused by row buffer miss 
8. The left parts with relative lower latency are put into Remain{}  //lower latency is caused by row buffer hit 
9. Call Step 2 
 

/*STEP 2: Detect column address bits. */ 
/*Based on the idea that bank parallelism outperforms row miss. */ 
1. FOR each bit y IN Remain{} 
2. DO 
3.       Choose an x from Row{} 
4.       Generate 2 requests, one’s x and y bit are both 0, and another x and y bit are both 1 
5.       Access the two address (uncached) in turn and record the latency (repeat at least 1000000 times) 
6. END FOR 
7. The latency will be easily clustered into two groups 
8. Put the group with higher latency into Column{} //row buffer miss leads to higher latency 
9. The left parts are put into Remain{}  //mapped to different banks. Bank parallelism causes lower latency 
10. IF there is no XOR policy THEN 
11.     Put Remain{} into BANK{} 
12.     Output BANK{} 
13. ELSE 
14.     Call STEP 3 
15. ENDIF 
 

/*STEP 3: Detect XOR Policy (Optional).  */ 
/*Many MCs employ XOR to improve performance. */ 
1. FOR each pair <u,v> IN {<u,v> | ∀u∈Remain{}∧∀v∈Remain{}}   // Note: u != v 
2. DO 
3.        Generate 2 memory requests, one’s u and v bit are both 0, and another request’s u and v bit are both 1 
           The other bits are identical except one bit in Row{} is different 
4.        Access the two addresses (uncached) in turn and record the latency (repeat at least 1000000 times) 
5.  END FOR 
6.  The latency will be easily clustered into one or two groups 
7.  IF there is only one group THEN 
8.       XOR is not employed 
9.  ELSE 
           // XOR makes <0,0> and <1,1> denote a specific bank, and thus higher latency is caused by row buffer miss 
10.      For each <u,v> pair in the group with higher latency, put "u XOR v" into BANK{} and delete u,v from Remain{}  
11. END IF 
12. Put Remain{} into BANK{} 
13. Output BANK{} 
END   
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3.4 Augmenting BPM and BPM+ with Dynamic Adjustments 
The prior sections only present BPM/BPM+ with static partitioning policy in which 
each of the running application is assigned to a pre-determined amount of memory 
bank/channel resources. However, in practice, a system could encounter challenges 
and complicated cases that cannot be appropriately handled by the static approach. 
For example, static partitioning is not suitable for the cases where multiple programs 
require dynamically changing amount of memory that cannot be easily determined 
statically.  If an application requires much more memory than the amount allocated 
by the static BPM, system performance could suffer due to excessive IO transactions 
as a result of the utilization of swap region. BMP+ is also limited by several factors 
such as the channel utilizations of various running applications (detailed in Section 
5.8). This section presents our study of limitations of the static BPM/BPM+ and 
motivates the design for BPM/BPM+ with dynamic adjustments. 
 

3.4.1 Dynamic Bank Partitioning for BPM  
Dynamic BPM is useful when an application requires more memory than the amount 
that the static BPM assigns to it. In such a case, we extend BPM to dynamically 
adjust the resource allocation and assign more memory to threads with higher 
memory demands through page re-coloring mechanism. Since page re-coloring incurs 
significant overheads [J.Lin et al, 2008], the dynamic adjustment process in BPM is 
only triggered when certain application experiences high memory pressure. Note that 
in many cases dynamic re-coloring means that applications with high memory 
demands can “borrow” unused pages from applications with low memory 
requirements. 

To determine whether an application’s memory requirement can be satisfied with 
the bank-level partitioning, BPM uses an OS level low overhead online profiling 
module that scans the application’s page table3 and calculates the required number 
of pages (RNP), which is the maximum number of pages an application would  touch 
at runtime. BPM then compares RNP with the actual number of pages in the 
allocated banks (BNP) for the application, which can be easily calculated based on 
the memory configuration information (i.e., memory capacity, number of banks, page 
size, etc.). BPM calculates RNP and BNP for all the running applications. Dynamic 
adjustment decision is made based on a comparison of the two values: if RNP is 
larger than BNP for one application, BPM can potentially “borrow” RNP-BNP pages 
from one or more applications in which BNP is larger than RNP. In reality, since 
partitioning mechanism prevents two or more applications from sharing the same 
bank, BPM only adjusts memory resource at a coarse granularity in most cases. In 
our experiments, we define SUM(RNP) = 𝑅𝑁𝑃!!!!

!!!  as the amount of pages used by 
all threads (N is the number of threads). Obviously, if SUM(RNP) × Page_Size (i.e., 
4KB in our system) is smaller than the memory capacity, it is likely that no I/O 
overhead will be incurred due to swap, and BPM can allocate appropriate amount of 
banks to applications according to their demands by dynamically adjusting. We 
further define NICE=BNP–RNP for each running application to represent the 
amount of potential resource that could be borrowed by other applications. The 
higher the NICE value is, the more resource one application can give to others. BPM 
sorts applications according to their NICE values to determine the “lenders” and 
“borrowers”.   Note  that  BPM  guarantees that  the  adjustment  does  not  hurt  any  

 
3 We actually scan the virtual memory area (VMA) structure of the program and use the start and end 
address of each memory area to calculate the total required virtual memory to avoid expensive traversal 
over the entire page table.  
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Figure 5. The correlation between bandwidth 
demands and performance changes caused by 
different policies. (This figure includes tens of 
workloads. The baseline is channel interleaving). 

                                                                                   

Figure 6. The correlation between unbalance 
factors and performance changes caused by 
channel partitioning across nearly 100 workloads 
after channel partitioning. (Each dot denotes a 
workload) 

                                                                                    
application (i.e., causing BNP–RNP<0). We conduct experiments and demonstrate 
that dynamic bank partitioning could significantly improve BPM effectiveness and 
memory utilizations under high memory pressure environments. In most case, 
adequate memory resource is provided and thus, dynamic adjustment does not 
happen frequently. Our experiments show that the average overhead is below 1.4%. 
Under certain extreme cases where memory pressure is high (e.g., most running 
applications exhibit high memory footprint), the coarse-grained bank-level 
adjustment is not suitable because the number of available banks is limited. Under 
these circumstances, in order to avoid resource underutilization and I/O swap, 
dynamic BPM is able to allow two or more applications to share the same bank or 
bank group.  
3.4.2 Dynamic Channel Partitioning for BPM+  
When Channel Partitioning is Beneficial? We conduct experiments to study the 
correlation between the system bandwidth requirement and the effectiveness of 
different partitioning approaches. Shown in Figure 5, as the bandwidth increases (x-
axis), the two approaches with channel partitioning (channel-only and BPM+) exhibit 
similar performance increasing trend. However, when the overall bandwidth 
requirement is below 2GB/s, the two approaches bring no obvious improvement (<1%). 
Thus, based on our experiments that average several tens of different cases, we 
conclude that channel partitioning is more effective when the system bandwidth 
requirement is beyond a certain threshold (2GB/s in DDR3-1600 with i7 CPU with 
channel-level interleaving configuration. i.e., 1GB/s per-channel). Notably, when 
entire bandwidth demand is above 2GB/s, the overall performance suffers 
tremendously if all running applications share only one channel (one-channel w/o 
partitioning represented in the purple curve). Thus we conclude that 2GB/s (i.e., 
1GB/s per-channel) is an important channel bandwidth threshold in our platform 
(with channel-level interleaving), beyond which the system needs to use more 
bandwidth resources from multiple channels to avoid significant performance 
degradation, indicating channel partitioning might potentially benefit performance. 

From another aspect, to reveal how channel partitioning affects the performance 
under different scenarios we run experiments of hundred of different workload 
combinations to find the key factor(s) that can impact the effectiveness of channel 
partitioning.  We found  that the unbalance between the two memory channels shows  
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Figure 7. The framework of dynamic BPM+. 

 
a great influence on the performance of channel partitioning. To quantify this 
influence we define a metric named Un-balance Factor, defined as |BUC1 – 
BUC2| / MIN (BUC1, BUC2), where BUC1 and BUC2 are the Bandwidth 
Utilizations of the two Channels. It directly reflects the difference of bandwidth 
utilization between different channels. Figure 6 draws a distribution of the tested 
workloads (dots in the figure) with different performance gains and unbalanced 
factors. As can be seen from the figure, workloads with small unbalance factors (left 
part of Figure 6) exhibit higher performance gains. As the unbalance factor grows 
larger the performance gain begins to drop. When the unbalance factor is above 0.2 
(which means one channel’s total memory requirement is 20% more than the other), 
many workloads experience a negative performance improvement. The above 
observations indicate that channels should be partitioned evenly. In addition to the 
unbalance factor, the absolute bandwidth utilization also affects performance. On the 
same unbalance factor, workloads with higher bandwidth utilization (workloads 
towards the two ends along the vertical axis in Figure 6) tend to exhibit larger 
performance impacts from the channel partitioning. Thus, we conclude that 
channel partitioning works best under low unbalance factor and high 
bandwidth utilization. The above conclusion motivates our design for BPM+ with 
dynamic adjustment and channel balancing, as described next. 
Dynamic BPM+ Design: BPM+ with dynamic channel adjustment requires the 
knowledge of the bandwidth requirement for each running workload. However, 
precisely measuring the bandwidth usage on a per-thread basis is not possible when 
more than one threads share the same memory channel.  To address the above issue 
and achieve dynamic BPM+, we developed a per-channel bandwidth utilization 
monitor implemented by Intel PMU to obtain the channel utilization information and 
a per-thread last level cache (LLC) miss monitor to estimate the memory bandwidth 
requirement for each thread. The LLC miss and channel utilization information is 
fed into a balance scheduler to dynamically adjust/migrate (implemented through 
page re-coloring) threads across memory channels to achieve better bandwidth 
balance. Since the lower the unbalanced factor is the more performance gains BPM+ 
can bring, as demonstrated by Figure 7, the key point is to minimize the difference of 
bandwidth utilization between two channels.  For instance, our approach assigns one 
thread with high bandwidth demands into channel 1 and three threads with relative 
lower bandwidth into channel 2 on a 4-core 2-channel platform. When adjusting 
channel balance, the balance scheduler considers the thread with the smallest 
memory footprint dictated by the LLC miss monitor as the migration candidate to 
avoid high page re-coloring overheads. In reality, our balance scheduler does not 
adjust the channel assignment frequently due to two reasons: first, dynamic channel 
adjustment requires page re-coloring, which incurs high overheads; second, in many 
cases once an application is running stably its bandwidth requirement does not 
change frequently. In summary, with the abovementioned dynamic partitioning 
mechanism, dynamic BPM+ accomplishes partitioning in two steps. In the first step, 
BPM+ tries to partition applications over the memory channels so that the unbalance 
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factor is minimized. In the second step the DRAM banks are partitioned dynamically 
among the applications under each channel based on their memory requirements, as 
described in Section 3.4.1. The scheduling routine scans the system in every 10s and 
collects the memory usage information (i.e., bandwidth unbalance factor, memory 
footprint of each application, etc.). Based on an online analysis of the collected 
information, our system determines whether or not to invoke the scheduling process. 
On our platform with the SPEC2006 workloads, 10s is an appropriate scheduling 
frequency that is enough to collect the workloads’ memory utilization information 
while incurring low overhead under most cases.  In practice, users can adjust the 
scanning interval according to their workloads’ features and system needs.   

3.5 Implementation of BPM/BPM+ 
We implement BPM and BPM+ in Linux kernel 2.6.32.15. The kernel uses a buddy 
system to manage the free physical pages, which are organized as different orders 
(0~11) of free lists (refer to Section 2.1). We modify the original free list organization 
into a hierarchy structure: for each order of free page list, we re-organize the free 
pages to form 32 colored free lists according to the five bank bits. Each process has its 
own colors (i.e., a group of banks). When a page fault occurs, the OS kernel searches 
a colored free list and allocates a page with target color for the process. This is 
transparent to applications so that programmers do not need to modify programs. 
For multi-programmed workloads, bank colors are assigned to each program. For 
multi-threaded workloads, we enhance the OS kernel with new APIs to expose the 
underlying bank colors to programmers so that they can map threads’ data into 
different colors based on their demands. The overhead of the color searching 
operation is negligible (0.3% on average).  

 METHODOLOGY AND METRICS 4.
4.1 Hardware and Software Platform 
We conduct our experiments on a machine with four 2.8GHz Intel Core i7-860 
processors sharing 8MB 16-way associative LLC. The processor incorporates Hyper-
Threading technology thus we can run 8 threads concurrently. We use CentOS Linux 
5.4 with kernel 2.6.32.15. The memory system is 8GB DDR3 with 64 banks (each 
bank is 125MB). There are five bank bits (i.e.,13,14,15,21,22) dividing the memory 
into 32 colors and each color represents two banks bundled together across the two 
channels. In our experiments, colors are statically assigned to processes/threads 
when they are created. Modern multicore servers often have enough memory for their 
running threads [G.Dhiman et al, 2009]. Therefore, we also disable the OS swap to 
avoid unexpected overhead. Moreover, for most of the experimental workloads, the 
memory capacity of 0.5~1GB (4~8 banks) is enough. We use Perfmon2 [Hewlett-
Packed Development Company] and its corresponding libpfm library to access the 
performance counters to gather architectural information such as memory bandwidth 
and LLC miss rate. For memory system, because DIMMs are directly plugged into 
the motherboard and it is difficult to measure memory power consumption, we adopt 
an in-house hardware tool [Z.Cui et al, 2011] that consists of a wrapper card for each 
DIMM. The wrapper card is plugged into the motherboard’s DIMM slot and the 
memory power consumption can be measured precisely via the sensors embedded 
into the wrapper card. It should be noted that the wrapper card does not affect the 
memory access at all. 
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Figure 8. Overall system performance improvement. 

 
Figure 9. Fairness improvement. 

4.2 Benchmarks 
We use the SPEC CPU2006 [Standard Performance Evaluation Corporation] 
benchmarks for evaluation. We compile each benchmark using gcc 4.4.3 with -O3 
optimizations. From these benchmarks, we randomly generate multi-programmed 
workloads, each of which contains 4 or 8 applications. We employ a multi-threaded 
benchmark streamcluster from PARSEC 2.1 [C.Bienia et al, 2008]. We use the notion 
of “Miss Per Kilo-Instruction (MPKI) > 1” to define memory-intensive applications. 
We use the recommended input size for SPEC benchmarks and the native input for 
PARSEC. In the first step of our experiments, we manually balance the bandwidth 
utilization among channels and assign DRAM banks to different threads statically. 
For BPM, each application in a 4-programmed workload is assigned 8 colors (i.e., 16 
banks/2GB) and each one in an 8-programmed workload is assigned 4 colors (i.e., 8 
banks/1GB). In the second step of the experiments, we enable the dynamic 
BPM/BPM+ and test them using on-line randomly generated diverse workloads. 

4.3 Metrics 
We use Weighted Speedup [18] (WS) to measure system throughput and use 
Maximum Slowdown (MS) [18] for fairness. We also report Improvement 
compared with the normal environment without BPM and BPM+. 
 

Weighted Speedup WS =  
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%&

;Maximum Slowdown MS = 𝑀𝑎𝑥
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%&
𝑅𝑈𝑁𝑇𝐼𝑀𝐸!"#$%
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  Figure 11. Dynamic BPM’s performance in 
  memory-limited cases. 
                                                                                   

  Figure 10. Row-buffer miss rate across 10 workloads            
  between BPM and No-BPM platforms.                              
                                                                                   
 RESULSTS 5.

5.1 Overall System Performance 
For performance evaluation we compare the proposed BPM and BPM+ with the 
cache-only partitioning approach over 20 randomly selected workloads (Note that in 
this experiment, we mannually balance the workloads’ bandwidth based on the off-
line profiling results). All the three schemes are normalized to a baseline system with 
no partitioning. Figure 8 shows that BPM and BPM+ bring steady speedups for all 
the tested workloads and no workload’s performance degrades compared with the 
baseline system. On average, BPM can improve the weighted speedup by 5.4% and 
4.1% for 8- and 4-programmed workloads, respectively. BPM+ brings an additional 
performance improvement of 1.2% and 1.1% over BPM for the 8- and 4-programmed 
workloads, respectively.  
    Now let us consider the 4- and 8- workloads seperately. For the 4-programmed 
workloads (i.e., workloads 11~20 in Figure 8), BPM achieves a weighted speedup of 
5.7% for workload 11, which contains 462.libquantum (MPKI = 50, RBL4 = 99.22%), 
403.gcc (MPKI = 0.4), 447.dealII (MPKI = 0.5) and 444.namd (MPKI = 0.3). Among 
these four benchmarks in workload 11, 462.libquantum is obviously a memory 
intensive application, specifically a stream-like program (RBL = 99.22%), while the 
other three are not memory intensive applications. In the baseline system where 
memory accesses are interleaved across all the DRAM banks, 462.libquantum causes  
substantial row-buffer conflicts due to its stream characteristic and thus results in 
drastic increases in the row-buffer hit rates for the other three applications. Figure 
10 shows the row buffer miss rate reaches nearly 50% for workload 11. On the other 
hand, BPM assigns each application with 8 dedicated bank-colors (16 banks) only to 
which the application’s memory requests can be delivered. According to Figure 1, 
restricting these benchmarks to dedicated banks incurs negligible performance 
degradation (8% for 462.libquantum and 1% for others). As a result, the overall 
system is improved as memory interference is fully eliminated (the overall row buffer 
miss rate also reduces by about 10% in Figure 10).   
    Among the 8-programmed workloads we find that workload 1, which also includes 
the memory intensive benchmark 462.libquantum, achieves a maximum performance 
improvement of 8.6%, compared to the 5.9% achieved by the 4-programmed 
counterpart (i.e., workload 11). In general, BPM and BPM+ bring higher performance 
gains with the 8-programmed workloads. This is because the 8-programmed 

 
4 RBL (Row-Buffer Locality) is equivalent to row buffer hit rate.   
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workloads create more contentions from a larger number of concurrently running 
programs. BPM+ performs slightly better for 8-programmed workloads since it 
introduces another level (i.e., channel-level) of partitioning that effectively partitions 
the potentially interfering memory requests. From the above analysis we draw a 
conclusion that our approaches can scale well for future multicore platforms with 
worsening interference scenarios. 

5.2 Fairness Evaluation 
For the fairness measure (shown in Figure 9), workload 11 exhibits 10% 
improvement and workload 14 sees an even higher improvement of 15.8%. A careful 
look into the constitutions of the two workloads finds that workload 11 comprises 
462.libquantum, 403.gcc, 444.namd and 447.dealII (MPKI = 0.5) while workload 14 
shares the first three benchmarks with its fourth one replaced by 456.hmmer (MPKI 
= 5.7). Obviously, 456.hmmer issues much more (i.e., more than 10 times) memory 
requests than 447.dealII thus it creates severe interference and fairness issues for 
workload 14 when running on the baseline system without BPM. This is due to the 
fact that the MCs in the baseline system usually give higher priority to memory 
requests with good row-buffer locality and thus memory intensive applications, which 
are more likely to exhibit good locality, can obtain higher priority over memory non- 
intensive applications. In the worst case, memory requests from memory intensive 
applications are always serviced first and this can starve applications with poor 
locality in a certain time window. By contrast, BPM isolates these applications with 
conflicting memory access patterns within their dedicated bank groups and thus 
effectively eliminating this unfairness. On average, BPM improves the fairness by 4% 
over the baseline system and 2.3% over the cache-only partitioning approach for the 
4-programmed workload. BPM brings slightly higher fairness improvement for the 8-
programmed workloads. 

It should be noted that there are several workloads exhibiting degraded fairness, 
i.e., workload 13, workload 15, workload 16 and workload 17. We find that those 
workloads have a common benchmark 429.mcf (MPKI = 99.8), which is an extremely 
memory intensive application. An interesting observation is that when reducing bank 
number from 64 to 16, unlike 462.libquantum whose performance decreases by 8%, 
the performance of 429.mcf only decreases by 2%. Therefore, BPM improves 429.mcf’s 
performance more than other non-intensive applications at the expense of slightly 
higher unfairness. BPM+ performs well and improves the fairness slightly since the 
aggressive programs such as 429.mcf are mapped into a different channel so that 
they cannot interfere with other programs and create unfairness.  

In general, BPM+ benefits fairness and also outperforms BPM for both 4- and 8-
programmed workloads on average. This is due to the similar reason that leads to the 
weighted speedup improvement of BPM+, as analyzed in Section 5.1. Notably, we 
observe that there are some workloads (workload 2, 3, and 6) for which BMP brings 
better fairness improvement than BPM+. This observation leaves us the space to 
choose an appropriate partitioning approach for fairness optimization in different 
cases. Figure 8 also illustrates the comparison between BPM/BPM+ and the cache-
only partitioning. When the cache partitioning is used (with 8 colors in our case), 
both system throughput and fairness are improved slightly (around 3%). However, 
cache partitioning does not perform as well as BPM/BPM+ for most of the tested 
workloads and in certain cases it can hurt the performance (e.g., workload 5, 7 in 
Figure 8). On the contrary, BPM and BPM+ perform well in all cases. Thus, we come 
up to the conclusion that BPM and BPM+ are promising techniques to mitigate 
fairness issues for future multicore computing environment.   
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Figure 12. Dynamic Partitioning’s performance 
under different unbalance factors. 

 

Figure 13. Thread level coloring. The above 
array is mapped to different bank colors. The 
colored rectangle in dataset represents shared 
data.  For these streaming-like multithreaded 
workloads, we partition the dataset in a 
straightforward way. But the memory requests 
issued from threads to the shared data (red 
rectangle in this figure) would impact the 
effectiveness of partitioning.  

 

 

5.3 Experimental Results of Dynamic Scheduling 
To test BPM with dynamic bank-level partitioning, we generate five 8-programmed 
workloads with heavy memory demanding benchmarks (each workload contains at 
least one benchmark that requires more than 500MB memory) and have them run on 
a platform with limited memory capacity (i.e., 4GB). Figure 11 presents the results. 
As BPM evenly partitions DRAM banks among the running benchmarks, I/O storage 
overhead is incurred for benchmarks whose memory demands exceed the initially 
assigned amount. Therefore, in the static BPM where the dynamic bank partitioning 
is disabled, the overall system performance degrades in many cases (workload 1’, 2’ 
and 3’), or with insignificant improvement (workload 4’, 5’) due to the I/O latency 
offsets the performance gains brought by eliminating bank-level conflicts. Dynamic 
BPM addresses this problem by allocating more resources to benchmarks with high 
memory demands on-the-fly while eliminating bank-level interferences and thus 
leads to an average of 4.6% performance improvement for the overall system.  

Figure 12 reports the performance improvements achieved by dynamic channel-
only partitioning, BPM and BPM+ under different unbalance factors across 20 
randomly online generated workloads with at least 4 benchmarks. These workloads 
are not the same ones as in previous experiments. As clearly shown in the figure, 
there are six workload combinations (numbered 1’’ to 6’’) with relatively high 
unbalance factors (> 0.2) on which channel partitioning brings negative performance 
impact up to 3%. This impact diminishes as the two memory channels exhibit a more 
balanced partitioning. BPM (no channel partitioning) can bring the performance 
gains in these cases because of the fine-grain cache-line interleaving across multi-
channel, which leverages the bandwidth utilization. Thus, in such cases BPM should 
be used instead of BPM+. The 7th and 8th workloads see a very close performance 
difference over the scheme without channel partitioning (i.e., BPM) and the schemes 
with channel partitioning (channel-only partitioning and BPM+). Workloads 6’’, 7’’ 
and 8’’ have relatively small unbalance factors (<0.2) but their performance are 
minimally affected (within ±1%) by various partitioning schemes due to the low 
memory bandwidth requirements of these workloads. As shown in Figure 5 and 
Figure 6, if the memory bandwidth requirement is around 2 GB/s (each channel 
provides around 1 GB/s with the channel interleaving), there will be no obvious 
difference (<0.5% on average) between BPM/BPM+ and Channel-Only partitioning, 
and the overall system performance improvement is less than 1% on average. 
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Starting from the 9th workload, channel partitioning begins to bring more gains than 
the bank partitioning. This happens since the fine-grained channel-level memory 
request interleaving brings more severe interferences than the bank-level 
interferences and the channel partitioning eliminates the inference without creating 
a resource under-utilization problem (both the two channels are almost equally 
utilized). As the channels are more balanced for the workloads to the right in Figure 
12, the channel partitioning brings more performance benefits than the bank-only 
partitioning. From Figure 12 we conclude that the dynamic mechanism (BPM or 
BPM+), by considering applications’ memory requirements and channel utilizations, 
could potentially lead to better memory utilizations and achieve optimal performance 
gain under different scenarios while avoiding off-line profiling and limitations in a 
static approach (i.e., incurring I/O storage).  

As mentioned in previous sections, during the dynamic scheduling process, our 
scheduler first tries to balance the bandwidth utilization through re-assigning some 
threads to an underutilized channel and then adjusts the amount of banks for each 
thread according to the actual memory usage. We find it is a cost-effective approach 
in practice since it can be easily deployed and brings performance benefits without 
complex scheduling logic in most cases. Nevertheless, for the workloads from 1’’ to 6’’, 
it is impossible to balance the two channels through coarse-grain scheduling. This is 
because that these workloads contain some applications whose bandwidth demands 
are significantly higher than the bandwidth sum of all the other threads. To handle 
these cases, our scheduler could assign memory resource from both of the two 
channels for the applications with extremely high bandwidth demands. However, as 
our experimental system is only equipped with a dual-channel memory, doing so will 
inevitably incur serious channel-level interference. In such cases, we can enable 
BPM-only partitioning to bring performance gain, as shown in Figure 12. Although 
the channel partitioning seems not desirable in above cases (workload 1’’ to 6’’ on our 
dual-channel platform), it would be useful on high-end servers with 4- or more 
channels, which provide more channel resources thus leaving more optimization 
space and flexibility for channel partitioning (more discussion are in Section 5.8: 
BPM+ orthogonally supports other policy).  

5.4 Multi-threaded Workload 
In practice, many servers are used to run multi-threaded workloads. We use 
streamcluster of PARSEC to evaluate BPM/BPM+. Its coloring scheme is nearly the 
same as that of the multi-programmed workloads. We use Native dataset (200000 *5 
points) as input in our experiment. For a stream of these input points, they are 
divided into N chunks according to the core number, the first N-1 chunks contains 
the same amount of points, while the Nth chunk collects the rest points. Because 
streamcluster itself is a typical data parallelism computing multi-threaded program, 
we could partition the dataset in a straightforward way (in Figure 13). We achieve 
performance gains by 1.7% and 2.3% with 4/8-thread respectively. The improvement 
is less than that of multi-programmed workloads, because of the large amount of 
shared data among threads (the colored rectangle in dataset in Figure 13). In our 
straightforward partitioning, the shared data belongs to the blue banks. When other 
threads access the shared data, inter-thread bank conflicts occur. Unlike our 
approach, a recent research attempt [H. Park et al, 2013] tries to optimize the 
memory accesses of multi-threads by interleaving all the memory requests across all 
banks. For streamcluster, their approach works better than BPM (around 15% 
improvement for 8-thread cases).    But  for  other  workloads  their  approach   shows  
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   Figure 14. The correlation between BPM/BPM+           Figure 15. Performance improvement of open-page     
   improvement and four indictors                                      policy w/ BPM over close-page policy 
 

moderate or even negative performance improvements in some cases. In our future 
work, we will compare our approach with H. Park’s effort greater depth and explore 
more effective optimization mechanism for multi-threaded workloads. Our potential 
directions include designing a better partitioning policy and leveraging a dynamic 
color adjustment mechanism. 

5.5 What Affects the BPM/BPM+? 
In this section, we study the correlation between workloads’ characteristics and 
performance improvements. We investigate four indicators derived from memory 
bandwidth (BW) and row-buffer locality (RBL) of individual benchmarks. Given a 
workload, we calculate the following four indicators: 1) The indicator Average(RBL) 
is the weighted average of the 4/8 programs’ RBL, where BW is the weight.  This 
indicates the overall row buffer locality of the workload. 2) The indicator Sum(BW)  is 
the sum of the 4/8 programs’ BW. This shows the intensity of the workload. 3) The 
indicator Stdev(RBL) is the weighted standard deviation of the 4/8 programs’ RBL. 
This represents the difference of locality among programs. 4) Sum(BW)*Stdev(RBL) 
is the combination of the two indicator stated before. Figure 14 illustrates four curves, 
which represent the correlation between the improvements of BPM and the four 
indicators respectively. To fit them into one figure, we normalize the value of all the 
four indicators within range (0, 1). Besides, there are 6 points on each curve and each 
point represents the average of multi workloads, which have close indicator values. 
According to the figure 14, none of the indicators matches the improvement trend of 
BPM perfectly except the Sum(BW)*Stdev(RBL) – as the indicator increases, the 
improvements of BPM also increase steadily. This metric indicates that memory 
interference is positively correlated to memory access intensity and divergence of 
application’ locality. The heavier the interference is in the system and the higher the 
potential row-buffer locality the application might exhibit, the more improvement 
BPM can achieve. We verify this indictor in most of the BPM+ effective cases and the 
experimental results show that the indictor works well in predicting the performance 
benefits from BPM+. This is because in the cases where bandwidth utilizations are in 
balance (or near balance), the primary reasons that lead to the performance gains in 
BPM and BPM+ are the same (i.e., eliminating the interference and improving the 
row-buffer locality).  
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   Figure 16. The correlation of BPM/BPM+ improvements and per-core  

                                 bandwidth across 34 workloads on average. 

5.6 Page-policy and Power 
The open-page policy is designed to favor memory accesses to the same row of 
memory bank by keeping the row in row-buffer and maintaining a row of data for 
consecutive accesses, while the close-page policy is designed to favor random accesses 
by writing back (precharge) the data in row-buffer to DRAM bank after every time 
access. Usually, MCs aim to achieve good row-buffer locality, therefore open-page 
policy has better performance than close-page policy in general. But recent studies 
show that the row-buffer locality in multicore systems is sharply decreased to a lower 
level [K. Sudan et al, 2010; A. Udipi et al, 2010]. Therefore, in practice, some servers 
have to compromise to use the close-page policy. Our experiments show that 
BPM/BPM+ can revive the open-page policy in multicore systems. In our experiments, 
we change the page policies of the experimental machine and measure the system 
throughput improvement. Figure 15 shows that open-page with BPM/BPM+ 
outperforms close-page by 6.3% in terms of weighted speedup. This implies that if we 
partition banks appropriately, open-page policy can still be employed in heavily 
threads computing environment. 

The active operation is the most power-consuming operation in the DRAM system 
[N. Aggarwal et al, 2008; A. Udipi et al, 2010], because it has to move an entire row 
from array to a row-buffer. BPM/BPM+ can lower the power consumption of DRAM 
because of the reduced row buffer conflict miss rate (as illustrated in Figure 15). As 
mentioned in 4.1, we measure the power consumption by real hardware [Z. Cui et.al, 
2011], so we can get the real value of power savings on memory system. Our 
experimental results show that BPM/BPM+ with open-page policy can save up to 5.2% 
of memory power consumption, better than the configurations without BPM/BPM+. 

5.7 The Correlation between BPM/BPM+ Improvements and Per-core Bandwidth 
Off-chip memory bandwidth is limited by the pin count of micro-processor chip and 
thereby is considered as the major bottleneck of the scalability of on-chip core 
number [S. Beamer et al, 2010; B. Rogers et al, 2009]. Since the number of cores is 
still increasing, memory bandwidth of each core is decreasing, causing more and 
more serious interference. To evaluate the influence of different per-core bandwidth 
upon BPM/BPM+, we emulate different bandwidth scenarios via varying memory 
frequency from 1333 to 800 MHz so that the per-core bandwidth decreases form 
1.3GB/s to 0.8GB/s. This experiment included over 30 workloads, and we average 
them in different cases. Figure 16 illustrates the correlation of weighted speedup 
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improvements (denoted as improvement and shown in the vertical axis in Figure 16) 
and per-core bandwidth is negative: BPM/BPM+ performs better when per-core 
bandwidth is lower. In fact, our previous experiments also provide evidences from 
another perspective. For example, when we enable Hyper-Threading on the 
experimental machine, the per-thread memory bandwidth decreases, but the overall 
system throughput still improve from 4.1%/5.2% (4-programmed) to 5.3%/6.5% (8-
programmed). Therefore, BPM and BPM+ are promising approaches for future many-
core architecture that arguably has even less per-core bandwidth. This figure also 
shows that BPM+ achieves more performance gain over BPM (the BPM+ curve 
increases slightly sharper than the BPM curve along the pre-core bandwidth axis) as 
bandwidth contention becomes more severe. This is because BPM+ reduces the all-to-
all contention among all applications in every channel.  

5.8 Discussion 
I/O storage: When the total memory requirement of any running program does not 
exceed the assigned memory capacity, both BPM and BPM+ could potentially bring 
significant performance benefits. However, once an application requires higher 
memory capacity than the system can offer, BPM and BPM+ will hurt the system 
performance since there are additional I/O transactions generated to access the swap 
region due to the limited memory space. We conducted experiments with benchmarks 
from SPEC2006 under limited memory capacity. The results show that once the I/O 
storage is used, the performances gains brought by BPM/BPM+ are offset by the long 
I/O transaction latency. Under such circumstances the overall improvement is only 
around 1% (significantly less than the 5% achieved in normal cases) and sometimes 
even below zero. Thus, we draw conclusion that a system should avoid such cases 
(incurring I/O storage) in practice when adopting the proposed techniques.  
BLP might hurt BPM/BPM+: Another factor that impacts our mechanism is the 
bank-level parallelism (BLP). We found that if the 470.lbm benchmark is included in 
the workload, BPM and BPM+ will hurt the performance. Actually, as shown in 
Figure 1, 470.lbm suffers the most significant slowdown when the number of banks it 
can use is below 16. Specifically, when this benchmark is assigned with only 16 to 8 
banks, its’ performance lost is 10% to 40%, which is much more than other 
benchmarks (1%~7% on average). This is because 470.lbm exhibits higher bank-level 
parallelism than other benchmarks. Based on this study we devise a 10% rule as a 
guideline for using BPM/BPM+ appropriately: when the workload contains one or 
more benchmarks that suffer more than 10% performance lost with bank partitioning, 
our approach should be carefully used. In addition to the above factors, the unbalance 
factor can also affect BPM+, as we have discussed in the prior sections. 
BPM+ orthogonally supports other policy: Although BPM+ confines a thread’s 
memory accesses in a particular channel, we provide APIs for users to assign more 
memory resource to the thread in other channels. The APIs are useful and can be 
used to balance bandwidth utilizations across multiple channels when one channel’s 
bandwidth utilization is significant higher than another. We have tried to use these 
APIs in some experiments (workload 16~20 in Figure 8) and find it difficult to always 
bring performance gains on our two-channel platform due to the following two 
reasons. First, channel re-balancing incurs channel-level interference as modern MCs 
do within multicore platforms (discussed before). Second, a thread’s bandwidth 
requirement might not be appropriately switched to another channel due to the 
diverse memory patterns. However, it is useful for machines with 4- or more 
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channels, which allow a certain high-bandwidth thread to use more than one channel 
while still providing multiple channels for interference elimination through other 
channels. Furthermore, we believe that there is a design space for utilizing this API 
under different cases and we will study this topic in our future work.  
Would channel-level partitioning penalize any threads with more 
bandwidth demands? It seems intuitively that the channel-level partitioning 
might over penalize a thread that could otherwise use multiple channels in the 
standard channel interleaving approach. However, from our experiments we 
observed some counter-intuitive yet explainable phenomenon. First, in multi-
threaded programs, allowing each thread to use multiple channels will inevitably 
bring serious contention at both channel and bank level, offsetting the advantages of 
the channel-level interleaving in many cases. Second, we find that when many 
threads are running together, the average bandwidth that one thread will use does 
not increase significantly. Thus, we conclude that channel partitioning among 
threads may potentially benefit the overall performance in practice. To this end, a 
natural follow-up question is: Is channel partitioning always beneficial? To address 
this question, we introduce a new metric called unbalance factor to show whether or 
not our mechanism brings positive impact. In practice it is possible that certain 
applications may require much more memory bandwidth than others. Our dynamic 
system handles this by giving these applications more resources (channels or banks).  

 RELATED WORK 6.
Partitioning in Memory Hierarchy: Both hardware based cache partitioning [G. 
E. Suh et al, 2004; M. K. Qureshi et al, 2006; H. S. Stone et al, 1992] and software 
page-coloring based cache partitioning [R. Azimi et al, 2009; S. Cho et al, 2006; J. Lin 
et al, 2008; J. Liedtke et al, 1997] are proposed to partition shared caches among    
threads to mitigate the inter-thread interference. DRAM bank partitioning was first 
proposed in [W. Mi et al, 2010], and then explored by several attempts [M. K. Jeong 
et al, 2012 and L.Liu et al, 2012]. The BPM [L.Liu et al, 2012] is the first effort that 
implements the bank partitioning in a real multicore system, and reveals the 
overlapped bits (O-bits) in physical address that index both LLC sets and DRAM 
banks. O-bits can be used to partition LLC and banks simultaneously. This motivates 
the work in [N.Suzuki et al, 2013] to develop a coordinated bank and cache coloring 
method. Additionally, the work in [Linux/RK] offers an open source kernel that also 
supports bank partitioning. The effort in [S. P. Muralidhara et al, 2011] first propose 
the channel partitioning approach, which maps data of different threads to different 
channels according to their memory access behaviors. However, they do not provide a 
thorough discussion upon the partitioning approach that combines the channel as 
well as DRAM bank at the same time, and the balance utilization issue among 
multiple channels. Additionally, this method is not implemented in a real machine. 
MC Optimization: MCs are designed to distinguish memory access behavior at 
thread-level in [R. Iyer et al, 2007; Y. Kim et al, 2010; O. Mutlu et al, 2007 and 2008]. 
In these approaches, the scheduling policy can be adjusted at run time based on 
application characteristics. TCM [Y. Kim et al, 2010], aims to address fairness and 
throughput at the same time by dynamically grouping threads into two clusters 
(memory intensive and non-intensive) and assigning different scheduling policies to 
different groups. The effort in [Kyle J. Nesbit et al, 2006] designs a memory 
scheduler within MC based on network fair queuing scheduling algorithms (offer 
guaranteed service), improving both fairness and throughput. Moreover, the state-of-
the-art approach MISE [L. Subramanian et al, 2013] estimates the application 
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slowdowns accurately by considering the rate of severed memory requests and their 
priorities in MC. Based on the estimation approaches are proposed to optimize 
memory system throughput and fairness. These methods need modifications to MC, 
and hence, in many cases, incur hardware design and manufacturing overheads. 
Software-Hardware Cooperative Memory Scheduling Optimization in User- 
level: Scheduling algorithms DI and DIO proposed in [S. Zhuravlev et al, 2010] 
aimed to distribute threads to achieve an even distribution of miss rate among 
multiple caches to avoid severe contention on cache, MC, bus and prefetching 
hardware. Similar mechanisms are also proposed in [G. Dhiman et al, 2009, R. 
Knauerhase et al, 2008]. Additionally, some efforts in [X. Zhang et al, 2009 and E. 
Ebrahimi et al, 2010] employ thread execution throttling and memory resource 
utilization throttling approach to achieve high throughput or fairness. These user-
level approaches often employ specific performance counters and can potentially be 
used in conjunction with BPM/BPM+ aim to alleviate memory interferences. 
Row-buffer Optimizations: In [K. Sudan et al, 2010], frequently accessed data 
from different rows are dynamically migrated into the row buffer to improve row 
buffer usage and performance. Row buffer power consumption can be also saved due 
to reduced amount of the precharge and active operations. In [D. Kaseridis et al, 
2011], the row-buffer is precharged upon every four accesses to reduce row-buffer 
conflicts. Moreover, it modifies the address mapping policy so that the memory access 
requests are better scattered across different banks. Similarly, the effort in [H. Park 
et al, 2013] attempts to randomize all the memory accesses through the coarse-
grained page-level interleaving reducing the potential row-buffer conflicts.  
Physical Page Management Optimization: A recent research effort [H. Park et al, 
2013] observes that applications with random physical page accesses tend to 
outperform those with regular page access patterns in many cases. Because a 
randomized page access pattern might reduce inter-thread interferences on the row-
buffer. Based on this, they propose an approach (M3) that interleaves memory 
requests from the same application across all banks as randomly as possible. M3 

performs particularly well for multi-threaded workloads with streaming memory 
accesses. Their experiments show that for sreamcluster M3 achieves above 15% 
performance improvement in 8-threaded case. However, M3 is not always effective 
and may hurt the overall performance, as can be concluded from the reported results. 
Another recent work [R. Das et al, 2013] proposes application-to-core mapping 
policies to reduce memory interference in multicore platforms, and it also modifies 
the physical page allocation and replacement routine in operating system to enforce 
the application clustering and mapping. These efforts aim to reducing the memory 
interference via new physical page management mechanism in operating system.  
Comparison with BPM/BPM+: The effort in [S. P. Muralidhara et al, 2011] 
proposes an application feature aware channel-level partitioning approach. Another 
similar attempt [M. K. Jeong et al, 2012] proposes a bank-level partitioning and a 
sub-ranking mechanism to eliminate the bank-level interferences and compensate for 
the reduced BLP by increasing the number of independent banks, respectively. Our 
work is quite different from the previous studies in the following two aspects. First, 
to the best of our knowledge, this is the first work that implements and evaluates 
both bank- and channel-level partitioning upon real machines. Second, our approach 
does not modify the hardware and can be applied to any Linux platforms. The 
approach in [H. Park et al, 2013] works well for some multi-threaded workloads but 
may brings minimal (around 1%) or even negative (down to -3%) performance in 
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some cases. Moreover, their work does not test multi-programmed workloads. In the 
contrast, BPM and BPM+ perform well for diverse workloads (both multi-
threaded/programmed) in general and do not degrade system throughput in most of 
our experiments (except the workloads whose total memory requirements exceed the 
system’s memory capacity). Moreover, our elastic mechanism supports diverse 
dynamic partitioning and scheduling policies that meet the requirements in practice. 

 CONCLUSION 7.
We present bank-/channel-level partitioning mechanisms (BPM/BPM+) to mitigate 
the interferences among threads and improve the performance in multicore systems. 
BPM/BPM+ achieves this goal by assigning different group of banks to different 
threads to eliminate inter-thread memory interferences. The proposed approaches 
bring a considerable reduction of row buffer misses as well as the energy 
consumption of memory system. BPM/BPM+ is the first bank-/channel-level 
partitioning that is implemented on real machines and supports dynamic 
partitioning. Our experimental evaluations show that our approaches can improve 
system throughput and reduce unfairness due to the mitigating of interference 
among threads. We further show that BPM/BPM+ is effective in future many-core 
platforms with decreasing per-core bandwidth.  
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Appendix: An example of Algorithm 1. 
Platform: i3-2100T (Sandy Bridge); Memory: 2GB, one DIMM, two ranks  
Reserve 1.5~2GB for address mapping test; Step 1, test all bits, the latencies are  
Bit 3 ~ Bit 5, latency = 69 ns; Bit 6, latency = 71 ns; Bit 7, latency = 70 ns; Bit 8 ~ Bit 9, 
latency = 69 ns; Bit 10, latency = 71 ns; Bit 11, latency = 69 ns; Bit 12, latency = 71 ns; Bit 13, 
latency = 83 ns; Bit 14, latency = 84 ns; Bit 15, latency = 90 ns; Bit 16, latency = 83 ns; Bit 17, 
latency = 83 ns; Bit 18, latency = 84 ns; Bit 19, latency = 90 ns; Bit 20, latency = 84 ns; Bit 21~ 
Bit 28, latency = 98 ns. 
Select 98ns as the first threshold, so bit 21~28 are classified to row address 
Step 2, choose bit21 as row address, test remain bits, which is bit 3~20, latencies are 
Bit 3 ~ Bit12, latency = 98 ns; Bit 13, latency = 83 ns; Bit 14, latency = 84 ns; Bit 15, latency = 
90 ns; Bit 16 ~ Bit 18, latency = 84 ns; Bit 19, latency = 90 ns; Bit 20, latency = 84 ns. 
Select 98 as the second threshold so bit 3~12 are classified to column address 
Step 3, remaining bits are 13~20, test all combinations: 
Bit 13 and Bit 14, latency = 84 ns; Bit 13 and Bit 15, latency = 90 ns; Bit 13 and Bit 16, latency 
= 84 ns; Bit 13 and Bit 17, latency = 98 ns; Bit 13 and Bit 18, latency = 84 ns; Bit 13 and Bit 19, 
latency = 90 ns; Bit 13 and Bit 20, latency = 84 ns; Bit 14 and Bit 15, latency = 92 ns; Bit 14 
and Bit 16, latency = 83 ns; Bit 14 and Bit 17, latency = 83 ns; Bit 14 and Bit 18, latency = 98 
ns; Bit 14 and Bit 19, latency = 92 ns; Bit 14 and Bit 20, latency = 83 ns; Bit 15 and Bit 16, 
latency = 92 ns; Bit 15 and Bit 17, latency = 92 ns; Bit 15 and Bit 18, latency = 92 ns; Bit 15 
and Bit 19, latency = 98 ns; Bit 15 and Bit 20, latency = 92 ns; Bit 16 and Bit 17, latency = 83 
ns; Bit 16 and Bit 18, latency = 84 ns; Bit 16 and Bit 19, latency = 92 ns; Bit 16 and Bit 20, 
latency = 98 ns; Bit 17 and Bit 18, latency = 84 ns; Bit 17 and Bit 19, latency = 93 ns; Bit 17 
and Bit 20, latency = 83 ns; Bit 18 and Bit 19, latency = 93 ns; Bit 18 and Bit 20, latency = 83 
ns; Bit 19 and Bit 20, latency = 93 ns. 
Select 98ns as the third threshold, so XOR bits are  
Bit13 xor Bit17; Bit14 xor Bit18; Bit15 xor Bit19; Bit16 xor Bit20 


